Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.066
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(4): 884-893, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621895

RESUMO

Sepsis is a systemic inflammatory response syndrome caused by infection, with high morbidity and mortality. Sepsis-induced liver injury(SILI) is one of the manifestations of sepsis-induced multiple organ syndrome. At present, there is no recommended pharmacological intervention for the treatment of SILI. traditional Chinese medicine(TCM), based on the holism and dialectical treatment concept, shows the therapeutic characteristics of multi-target and multi-pathway and can comprehensively prevent and treat SILI by interfering with inflammatory factors, inflammatory signaling pathways, and anti-oxidative stress and inhibiting apoptosis. This article reviewed the experimental studies on the treatment of SILI with TCM to clarify its pathogenic mechanism and therapeutic characteristics, so as to provide more ideas and directions for the development or preparation of new drugs.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Medicamentos de Ervas Chinesas , Sepse , Humanos , Medicina Tradicional Chinesa , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Sepse/complicações , Sepse/tratamento farmacológico , Apoptose , Transdução de Sinais , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia
2.
Biochem Biophys Res Commun ; 710: 149880, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38581952

RESUMO

Drug-induced liver injury (DILI) occurs frequently and can be life-threatening. Increasing researches suggest that acetaminophen (APAP) overdose is a leading cause of drug-induced liver injury. Indole-3-carboxaldehyde (I3A) alleviates hepatic inflammation, fibrosis and atherosclerosis, suggesting a potential role in different disease development. However, the question of whether and how I3A protects against acetaminophen-induced liver injury remains unanswered. In this study, we demonstrated that I3A treatment effectively mitigates acetaminophen-induced liver injury. Serum alanine/aspartate aminotransferases (ALT/AST), liver malondialdehyde (MDA) activity, liver glutathione (GSH), and superoxide dismutase (SOD) levels confirmed the protective effect of I3A against APAP-induced liver injury. Liver histological examination provided further evidence of I3A-induced protection. Mechanistically, I3A reduced the expression of apoptosis-related factors and oxidative stress, alleviating disease symptoms. Finally, I3A treatment improved survival in mice receiving a lethal dose of APAP. In conclusion, our study demonstrates that I3A modulates hepatotoxicity and can be used as a potential therapeutic agent for DILI.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Indóis , Animais , Camundongos , Acetaminofen/efeitos adversos , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Estresse Oxidativo , Fígado/metabolismo , Apoptose , Glutationa/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Aspartato Aminotransferases , Alanina Transaminase
4.
J Agric Food Chem ; 72(15): 8476-8490, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38588403

RESUMO

Melosira nummuloides is a microalga with a nutritionally favorable polyunsaturated fatty acid profile. In the present study, M. nummuloides ethanol extract (MNE) was administered to chronic-binge alcohol-fed mice and alcohol-treated HepG2 cells, and its hepatoprotective effects and underlying mechanisms were investigated. MNE administration reduced triglyceride (TG), total cholesterol (T-CHO), and liver injury markers, including aspartate transaminase (AST) and alanine transaminase (ALT), in the serum of chronic-binge alcohol-fed mice. However, MNE administration increased the levels of phosphorylated adenosine monophosphate-activated protein kinase (P-AMPK/AMPK) and PPARα, which was accompanied by a decrease in SREBP-1; this indicates that MNE can inhibit adipogenesis and improve fatty acid oxidation. Moreover, MNE administration upregulated the expression of antioxidant enzymes, including SOD, NAD(P)H quinone dehydrogenase 1, and GPX, and ameliorated alcohol-induced inflammation by repressing the Akt/NFκB/COX-2 pathway. Metabolomic analysis revealed that MNE treatment modulated many lipid metabolites in alcohol-treated HepG2 cells. Our study findings provide evidence for the efficacy and mechanisms of MNE in ameliorating alcohol-induced liver injury.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Etanol , Camundongos , Animais , Etanol/efeitos adversos , Etanol/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Fígado/metabolismo , Metabolismo dos Lipídeos , Redes e Vias Metabólicas , Camundongos Endogâmicos C57BL
5.
Pestic Biochem Physiol ; 200: 105830, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582593

RESUMO

Chlorantraniliprole (CAP) is a bis-amide pesticide used for pest control mainly in agricultural production activities and rice-fish co-culture systems. CAP residues cause liver damage in non-target organism freshwater fish. However, it is unclear whether CAP-exposure-induced liver injury in fish is associated with mitochondrial dysfunction-mediated mitophagy, ferroptosis, and cytokines. Therefore, we established grass carp hepatocyte models exposed to different concentrations of CAP (20, 40, and 80 µM) in vitro. MitoSOX probe, JC-1 staining, immunofluorescence double staining, Fe2+ staining, lipid peroxidation staining, qRT-PCR, and Western blot were used to verify the physiological regulatory mechanism of CAP induced liver injury. In the present study, the CAP-treated groups exhibited down-regulation of antioxidant-related enzyme activities and accumulation of peroxides. CAP treatment induced an increase in mitochondrial reactive oxygen species (mtROS) levels and altered expression of mitochondrial fission/fusion (Drp1, Fis1, Mfn1, Mfn2, and Opa1) genes in grass carp hepatocytes. In addition, mitophagy (Parkin, Pink1, p62, LC3II/I, and Beclin-1), ferroptosis (GPX4, COX2, ACSL4, FTH, and NCOA4), and cytokine (IFN-γ, IL-18, IL-17, IL-6, IL-10, IL-1ß, IL-2, and TNF-α)-related gene expression was significantly altered. Collectively, these findings suggest that CAP exposure drives mitophagy activation, ferroptosis occurrence, and cytokine homeostasis imbalance in grass carp hepatocytes by triggering mitochondrial dysfunction mediated by the mtROS-mitochondrial fission/fusion axis. This study partly explained the physiological regulation mechanism of grass carp hepatocyte injury induced by insecticide CAP from the physiological and biochemical point of view and provided a basis for evaluating the safety of CAP environmental residues to non-target organisms.


Assuntos
Carpas , Doença Hepática Crônica Induzida por Substâncias e Drogas , Ferroptose , Doenças Mitocondriais , ortoaminobenzoatos , Animais , Citocinas/genética , Transdução de Sinais , Dinâmica Mitocondrial , Mitofagia , Hepatócitos , Homeostase
6.
World J Gastroenterol ; 30(7): 728-741, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515944

RESUMO

BACKGROUND: Liver injury is common in severe acute pancreatitis (SAP). Excessive autophagy often leads to an imbalance of homeostasis in hepatocytes, which induces lipid peroxidation and mitochondrial iron deposition and ultimately leads to ferroptosis. Our previous study found that milk fat globule epidermal growth factor 8 (MFG-E8) alleviates acinar cell damage during SAP via binding to αvß3/5 integrins. MFG-E8 also seems to mitigate pancreatic fibrosis via inhibiting chaperone-mediated autophagy. AIM: To speculate whether MFG-E8 could also alleviate SAP induced liver injury by restoring the abnormal autophagy flux. METHODS: SAP was induced in mice by 2 hly intraperitoneal injections of 4.0 g/kg L-arginine or 7 hly injections of 50 µg/kg cerulein plus lipopolysaccharide. mfge8-knockout mice were used to study the effect of MFG-E8 deficiency on SAP-induced liver injury. Cilengitide, a specific αvß3/5 integrin inhibitor, was used to investigate the possible mechanism of MFG-E8. RESULTS: The results showed that MFG-E8 deficiency aggravated SAP-induced liver injury in mice, enhanced autophagy flux in hepatocyte, and worsened the degree of ferroptosis. Exogenous MFG-E8 reduced SAP-induced liver injury in a dose-dependent manner. Mechanistically, MFG-E8 mitigated excessive autophagy and inhibited ferroptosis in liver cells. Cilengitide abolished MFG-E8's beneficial effects in SAP-induced liver injury. CONCLUSION: MFG-E8 acts as an endogenous protective mediator in SAP-induced liver injury. MFG-E8 alleviates the excessive autophagy and inhibits ferroptosis in hepatocytes by binding to integrin αVß3/5.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Ferroptose , Glicolipídeos , Glicoproteínas , Gotículas Lipídicas , Pancreatite , Camundongos , Animais , Fator VIII , Pancreatite/induzido quimicamente , Pancreatite/complicações , Doença Aguda , Hepatócitos/metabolismo , Autofagia , Família de Proteínas EGF , Proteínas do Leite/metabolismo , Proteínas do Leite/farmacologia
7.
Int J Clin Pharmacol Ther ; 62(5): 222-228, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431833

RESUMO

OBJECTIVE: Azvudine is an effective treatment for patients infected with common COVID-19. However, physicians have reported a series of adverse reactions, including multiple cases of liver injury, caused by azvudine in clinical practice. This study assessed the incidence, clinical features, and associated risk factors of liver injury induced by azvudine in real-world settings, offering guidance for safe clinical use. MATERIALS AND METHODS: This study utilized the Chinese Hospital Pharmacovigilance System (CHPS) to retrospectively analyze the treatment of COVID-19 patients with azvudine at Changsha Central Hospital from December 19, 2022, to June 6, 2023. A case-control study was conducted to analyze the occurrence of azvudine-induced liver injury in COVID-19 patients who triggered a CHPS alert compared to normal COVID-19 patients. RESULTS: Among the total of 2,141 COVID-19 patients, 31 (1.45%) developed azvudine-induced liver injury, which is classified as an occasional adverse reaction. Liver injury was observed in 93.55% of patients between days 4 and 12 of the azvudine treatment, with elevated transaminases as the primary clinical manifestation. Univariate and binary logistic regression analyses indicated that low albumin levels and co-administration of low-molecular-weight heparin were statistically significant risk factors (p < 0.05). CONCLUSION: This study represents the first investigation of azvudine-induced liver injury and high-risk patients using the CHPS. The findings provide valuable insights to promote the safety of anti-COVID-19 drugs, serving as an important reference for future drug safety measures.


Assuntos
Azidas , COVID-19 , Doença Hepática Crônica Induzida por Substâncias e Drogas , Desoxicitidina/análogos & derivados , Humanos , Heparina de Baixo Peso Molecular/efeitos adversos , Farmacovigilância , Estudos Retrospectivos , Estudos de Casos e Controles , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Estudos Prospectivos , Fatores de Risco , Albuminas
8.
BMC Med Genomics ; 17(1): 80, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549107

RESUMO

OBJECTIVE: Mice are routinely utilized as animal models of drug-induced liver injury (DILI), however, there are significant differences in the pathogenesis between mice and humans. This study aimed to compare gene expression between humans and mice in acetaminophen (APAP)-induced liver injury (AILI), and investigate the similarities and differences in biological processes between the two species. METHODS: A pair of public datasets (GSE218879 and GSE120652) obtained from GEO were analyzed using "Limma" package in R language, and differentially expressed genes (DEGs) were identified, including co-expressed DEGs (co-DEGs) and specific-expressed DEGS (specific-DEGs). Analysis of Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed analyses for specific-DEGs and co-DEGs. The co-DEGs were also used to construct transcription factor (TF)-gene network, gene-miRNA interactions network and protein-protein interaction (PPI) network for analyzing hub genes. RESULTS: Mouse samples contained 1052 up-regulated genes and 1064 down-regulated genes, while human samples contained 1156 up-regulated genes and 1557 down-regulated genes. After taking the intersection between the DEGs, only 154 co-down-regulated and 89 co-up-regulated DEGs were identified, with a proportion of less than 10%. It was suggested that significant differences in gene expression between mice and humans in drug-induced liver injury. Mouse-specific-DEGs predominantly engaged in processes related to apoptosis and endoplasmic reticulum stress, while human-specific-DEGs were concentrated around catabolic process. Analysis of co-regulated genes reveals showed that they were mainly enriched in biosynthetic and metabolism-related processes. Then a PPI network which contains 189 nodes and 380 edges was constructed from the co-DEGs and two modules were obtained by Mcode. We screened out 10 hub genes by three algorithms of Degree, MCC and MNC, including CYP7A1, LSS, SREBF1, FASN, CD44, SPP1, ITGAV, ANXA5, LGALS3 and PDGFRA. Besides, TFs such as FOXC1, HINFP, NFKB1, miRNAs like mir-744-5p, mir-335-5p, mir-149-3p, mir-218-5p, mir-10a-5p may be the key regulatory factors of hub genes. CONCLUSIONS: The DEGs of AILI mice models and those of patients were compared, and common biological processes were identified. The signaling pathways and hub genes in co-expression were identified between mice and humans through a series of bioinformatics analyses, which may be more valuable to reveal molecular mechanisms of AILI.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , MicroRNAs , Humanos , Animais , Camundongos , Acetaminofen/toxicidade , Perfilação da Expressão Gênica , MicroRNAs/genética , Redes Reguladoras de Genes , Biologia Computacional , Expressão Gênica
9.
Am J Physiol Gastrointest Liver Physiol ; 326(4): G460-G472, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38440827

RESUMO

Current therapy for hepatic injury induced by the accumulation of bile acids is limited. Leucine-rich repeat G protein-coupled receptor 4 (LGR4), also known as GPR48, is critical for cytoprotection and cell proliferation. Here, we reported a novel function for the LGR4 in cholestatic liver injury. In the bile duct ligation (BDL)-induced liver injury model, hepatic LGR4 expression was significantly downregulated. Deficiency of LGR4 in hepatocytes (Lgr4LKO) notably decreased BDL-induced liver injury measured by hepatic necrosis, fibrosis, and circulating liver enzymes and total bilirubin. Levels of total bile acids in plasma and liver were markedly reduced in these mice. However, deficiency of LGR4 in macrophages (Lyz2-Lgr4MKO) demonstrated no significant effect on liver injury induced by BDL. Deficiency of LGR4 in hepatocytes significantly attenuated S1PR2 and the phosphorylation of protein kinase B (AKT) induced by BDL. Recombinant Rspo1 and Rspo3 potentiated the taurocholic acid (TCA)-induced upregulation in S1PR2 and phosphorylation of AKT in hepatocytes. Inhibition of S1PR2-AKT signaling by specific AKT or S1PR2 inhibitors blocked the increase of bile acid secretion induced by Rspo1/3 in hepatocytes. Our studies indicate that the R-spondins (Rspos)-LGR4 signaling in hepatocytes aggravates the cholestatic liver injury by potentiating the production of bile acids in a S1PR2-AKT-dependent manner.NEW & NOTEWORTHY Deficiency of LGR4 in hepatocytes alleviates BDL-induced liver injury. LGR4 in macrophages demonstrates no effect on BDL-induced liver injury. Rspos-LGR4 increases bile acid synthesis and transport via potentiating S1PR2-AKT signaling in hepatocytes.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Colestase , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fígado/metabolismo , Colestase/complicações , Colestase/metabolismo , Hepatócitos/metabolismo , Ácidos e Sais Biliares/metabolismo , Ductos Biliares/metabolismo , Ligadura , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
10.
J Ethnopharmacol ; 328: 118080, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38521426

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The use of antineoplastic drugs, such as cisplatin, in clinical practice can cause adverse effects in patients, such as liver injury, which limits their long-term use. Therefore, there is an urgent need to develop alternative therapeutic strategies or drugs to minimize cisplatin-induced liver injury. Huangqi, the root of Astragalus membranaceus, is extensively used in traditional Chinese medicine (TCM) and has been employed in treating diverse liver injuries. Astragalus membranaceus contains several bioactive constituents, including triterpenoid saponins, one of which, astragaloside IV (ASIV), has been reported to have anti-inflammatory and antioxidant stress properties. However, its potential in ameliorating cisplatin-induced liver injury has not been explored. AIM OF THE STUDY: The objective of this study was to examine the mechanism by which ASIV protects against cisplatin-induced liver injury. MATERIALS AND METHODS: This study established a model of cisplatin-induced liver injury in mice, followed by treatment with various doses of astragaloside IV (40 mg/kg, 80 mg/kg). In addition, a model of hepatocyte ferroptosis in AML-12 cells was established using RSL3. The mechanism of action of astragaloside IV was investigated using a range of methods, including Western blot assay, qPCR, immunofluorescence, histochemistry, molecular docking, and high-content imaging system. RESULTS: The findings suggested a significant improvement in hepatic injury, inflammation and oxidative stress phenotypes with the administration of ASIV. Furthermore, network pharmacological analyses provided evidence that a major pathway for ASIV to attenuate cisplatin-induced hepatic injury entailed the cell death cascade pathway. It was observed that ASIV effectively inhibited ferroptosis both in vivo and in vitro. Subsequent experimental outcomes provided further validation of ASIV's ability to hinder ferroptosis through the inhibition of PPARα/FSP1 signaling pathway. The current findings suggest that ASIV could function as a promising phytotherapy composition to alleviate cisplatin-induced liver injury. CONCLUSIONS: The current findings suggest that astragaloside IV could function as a promising phytotherapy composition to alleviate cisplatin-induced liver injury.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Ferroptose , Saponinas , Triterpenos , Humanos , Camundongos , Animais , Cisplatino/toxicidade , Simulação de Acoplamento Molecular , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Saponinas/farmacologia , Saponinas/uso terapêutico , Saponinas/química , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Triterpenos/química
11.
Artigo em Inglês | MEDLINE | ID: mdl-38442785

RESUMO

Difenoconazole (DFZ) is a widely used triazole fungicide in agricultural production. However, the presence of DFZ residue in the environment poses a significant risk to non-target organisms. Ferulic acid (FA) is a phenolic compound known for its antioxidant and anti-inflammatory properties. This study aims to investigate the hepatic damage caused by DFZ in carp and explore the mechanism through which FA alleviates this damage. The findings revealed that FA enhanced the antioxidant capability of the carp's liver and reduced the accumulation of reactive oxygen species (ROS) in the liver tissue. Moreover, FA regulated the transcriptional levels of inflammation-related factors, effectively preventing the inflammatory response triggered by the NF-κB signaling pathway. Additionally, TUNEL results demonstrated that DFZ initiated apoptosis, while dietary supplementation with FA decreased the protein expression levels of Bax and Cytochrome C (Cyt c) and the transcriptional levels of bax, caspase3, caspase9, p53 genes. Furthermore, FA increased the protein expression and transcriptional levels of Bcl-2. In conclusion, FA protects against liver injury induced by DFZ exposure in carp by modulating oxidative damage, inflammation, and apoptosis.


Assuntos
Carpas , Doença Hepática Crônica Induzida por Substâncias e Drogas , Ácidos Cumáricos , Dioxolanos , Animais , Antioxidantes/farmacologia , Proteína X Associada a bcl-2 , Estresse Oxidativo , Inflamação/induzido quimicamente , Triazóis/toxicidade , Apoptose
12.
Int Immunopharmacol ; 131: 111799, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38460297

RESUMO

The application of immune checkpoint inhibitors (ICIs) has made extraordinary achievements in tumor treatment. Among them, programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors can improve the prognosis of advanced tumors, and have been widely used in clinical practice to treat many types of cancers. However, excessive immune response can also induce immune-related adverse events (irAEs) involving many organs. Of these, immune-related liver injury is the relatively common and carries the highest morbidity, which has attracted the attention of hepatologists all over the world. The incidence of this type of liver injury depends specifically on factors such as the type of drug being combined, viral infection, type of cancer and liver transplantation. Although there is no unanimity on the mechanism of PD-1/PD-L1 inhibitor-induced liver injury, in this review, we also summarize the current evidence that provides insights into the pathogenesis of PD-1/PD-L1 inhibitor-induced liver injury, including the fact that PD-1/PD-L1 inhibitors cause reactivation of CTLs, aberrant presentation of autoantigens, hepatic immune tolerance environment is disrupted, and cytokine secretion, among other effects. Patients usually develop liver injury after the use of PD-1/PD-L1 inhibitors, and clinical symptoms mainly include weakness, muscle pain, nausea and vomiting, and jaundice. Histologically, the main manifestation is lobular hepatitis with lobular inflammatory infiltration. Since the specific biomarkers for PD-1/PD-L1 inhibitor-associated liver injury have not been identified yet, alpha-fetoprotein, IL-6, and IL-33 have the potential to be biomarkers for predicting this type of liver injury in the future, but this requires further research. We also describe the examination and treatment of this type of liver injury, which usually includes eliminating related influencing factors, regularly monitoring liver function, temporarily retaining or permanently stopping ICIs treatment according to the severity of toxicity, and using corticosteroids. This review may provide useful information for the future clinical practice of PD-1/PD-L1 inhibitors.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Neoplasias , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Imunoterapia/efeitos adversos , Receptor de Morte Celular Programada 1
13.
Int Immunopharmacol ; 131: 111861, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38484665

RESUMO

Glutathione (GSH) depletion, mitochondrial damage, and oxidative stress have been implicated in the pathogenesis of acetaminophen (APAP) hepatotoxicity. Here, we demonstrated that the expression of histone deacetylase 6 (HDAC6) is highly elevated, whereas malate dehydrogenase 1 (MDH1) is downregulated in liver tissues and AML-12 cells induced by APAP. The therapeutic benefits of LT-630, a novel HDAC6 inhibitor on APAP-induced liver injury, were also substantiated. On this basis, we demonstrated that LT-630 improved the protein expression and acetylation level of MDH1. Furthermore, after overexpression of MDH1, an upregulated NADPH/NADP+ ratio and GSH level and decreased cell apoptosis were observed in APAP-stimulated AML-12 cells. Importantly, MDH1 siRNA clearly reversed the protection of LT-630 on APAP-stimulated AML-12 cells. In conclusion, LT-630 could ameliorate liver injury by modulating MDH1-mediated oxidative stress induced by APAP.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Desacetilase 6 de Histona , Leucemia Mieloide Aguda , Animais , Humanos , Camundongos , Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Glutationa/metabolismo , Desacetilase 6 de Histona/antagonistas & inibidores , Leucemia Mieloide Aguda/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos
14.
Toxicology ; 503: 153767, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437911

RESUMO

Ricin is a highly toxic plant toxin that can cause multi-organ failure, especially liver dysfunction, and is a potential bioterrorism agent. Despite the serious public health challenge posed by ricin, effective therapeutic for ricin-induced poisoning is currently unavailable. Therefore, it is important to explore the mechanism of ricin poisoning and develop appropriate treatment protocols accordingly. Previous studies have shown that lipid peroxidation and iron accumulation are associated with ricin poisoning. Ferroptosis is an iron-dependent form of cell death caused by excessive accumulation of lipid peroxide. The role and mechanism of ferroptosis in ricin poisoning are unclear and require further study. We investigated the effect of ferroptosis on ricin-induced liver injury and further elucidated the mechanism. The results showed that ferroptosis occurred in the liver of ricin-intoxicated rats, and Ferrostatin­1 could ameliorate hepatic ferroptosis and thus liver injury. Ricin induced liver injury by decreasing hepatic reduced glutathione and the protein level of glutathione peroxidase 4 and Solute Carrier Family 7 Member 11, increasing iron, malondialdehyde and reactive oxygen species, and mitochondrial damage, whereas Ferrostatin­1 pretreatment increased hepatic reduced glutathione and the protein level of glutathione peroxidase 4 and Solute Carrier Family 7 Member 11, decreased iron, malondialdehyde, and reactive oxygen species, and ameliorated mitochondrial damage, thereby alleviated liver injury. These results suggested that ferroptosis exacerbated liver injury after ricin poisoning and that inhibition of ferroptosis may be a novel strategy for the treatment of ricin poisoning.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Cicloexilaminas , Ferroptose , Doenças Transmitidas por Alimentos , Fenilenodiaminas , Ricina , Animais , Ratos , Ricina/toxicidade , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Espécies Reativas de Oxigênio , Ferro , Malondialdeído , Glutationa
15.
Zhonghua Gan Zang Bing Za Zhi ; 32(2): 133-139, 2024 Feb 20.
Artigo em Chinês | MEDLINE | ID: mdl-38514262

RESUMO

Objective: To explore the association between aldehyde dehydrogenase 2 (ALDH2) gene polymorphisms and abnormal liver function-induced by acetaminophen (APAP) drugs. Methods: An ALDH2 gene knockout mouse model was constructed using CRISPR/Cas9 gene editing technology. The obtained heterozygous mice were mated with opposite sex of heterozygotes. Genomic DNA was extracted from the tail of the offspring mouse. The polymerase chain reaction (PCR) method was used to determine the ALDH2 genotype. APAP was further used to induce acute drug-induced liver injury models in wild-type and ALDH2 knockout mice. Blood and liver tissues of mice were collected for liver function index, HE staining, F4/80 immunohistochemistry, and other detections. The intergroup mean was compared using a one-way ANOVA. The LSD- t test was used for pairwise comparison. Results: ALDH2 knockout mice were bred successfully. The genotyping of the offspring was segregated into the wild-type (ALDH2(+/+)), heterozygous mutant (ALDH2(+/-)), and homozygous mutant (ALDH2(-/-)), respectively. Biochemical and histological results after APAP modeling showed that the level of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and total bilirubin (TBil) was not significantly increased in the blank control group (P < 0.05), while the ALT, AST,ALP, and TBil were all elevated in the APAP experimental group. The levels of ALT (P  = 0.004), AST (P = 0.002), and TBil (P = 0.012) were significantly elevated among the mutant group compared to those in the wild-type group, and the expression levels of these indicators were also significantly elevated among the homozygous mutant group compared to those in the heterozygous mutant group (P = 0.003, 0 and 0.006). In addition, the ALP levels were higher in the heterozygous mutation group than those in the homozygous mutant group (P = 0.085) and wild-type group mice, but the difference was only statistically significant compared to wild-type mice (P = 0.002). HE staining results showed that mice in the APAP experimental group had hepatocyte degeneration, necrosis, and increased inflammatory cell infiltration, which was mostly evident in mutant mice. Simultaneously, the F4/80 immunohistochemical staining results showed that brown granules were visible in the liver tissue of APAP experimental group mice, and its expression levels were significantly enhanced compared to the blank control group. Conclusion: APAP-induced liver function abnormalities were associated with the ALDH2 gene polymorphism. The liver injury symptoms were increased in ALDH2 mutant mice following APAP modeling, and the ALDH2 gene defect may alleviate, to some extent, APAP-induced liver function abnormalities.


Assuntos
Aldeído Oxirredutases , Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Animais , Camundongos , Acetaminofen/efeitos adversos , Acetaminofen/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Fígado/patologia , Camundongos Knockout , Doença Hepática Induzida por Substâncias e Drogas/patologia , Alanina Transaminase
16.
J Agric Food Chem ; 72(12): 6660-6671, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38501926

RESUMO

Background: Deoxynivalenol (DON) contamination, pervasive throughout all stages of food production and processing, presents a significant threat to human health. The degradation of ferritin mediated by nuclear receptor coactivator 4 (NCOA4), termed ferritinophagy, plays a crucial role in maintaining iron homeostasis and regulating ferroptosis. Aim: This study aims to elucidate the role of ferritinophagy and ferroptosis in DON-induced liver injury. Methods: Male mice and AML12 cells were subjected to varying doses of DON, serving as in vivo and in vitro models, respectively. Protein expression was assessed by using immunofluorescence and western blot techniques. Co-immunoprecipitation was employed to investigate the protein-protein interactions. Results: Our findings demonstrate that DON triggers hepatocyte ferroptosis in a ferritinophagy-dependent manner. Specifically, DON impedes the activation of the mammalian target of rapamycin complex 1 (mTORC1) by inhibiting RAC1's binding to mTOR, thereby ultimately inducing autophagy. Concurrently, DON amplifies NCOA4's affinity for ferritin by facilitating NCOA4 phosphorylation through the ataxia-telangiectasia mutated kinase (ATM), thus promoting the autophagy-dependent degradation of ferritin. Both autophagy inhibition and NCOA4 expression suppression ameliorate DON-induced ferroptosis. Conclusion: Our study concludes that DON facilitates NCOA4-mediated ferritinophagy via the ATM-NCOA4 pathway, subsequently inducing ferroptosis in the liver.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Tricotecenos , Humanos , Masculino , Animais , Camundongos , Hepatócitos , Autofagia , Ferritinas , Mamíferos
17.
Phytomedicine ; 127: 155428, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38458086

RESUMO

BACKGROUND: Previous studies have confirmed the antioxidant and anti-inflammatory effects of active ginseng components that protect against liver injury. However, ginseng-derived nanoparticles (GDNPs), low-immunogenicity nanovesicles derived from ginseng, have not been reported to be hepatoprotective. PURPOSE: In this study, we investigated whether GDNPs could attenuate alcohol-induced liver injury in LO2 cells and mice by modulating oxidative stress and inflammatory pathways, thereby advancing the theoretical basis for the development of novel pharmacological treatments. STUDY DESIGN: Alcohol was used to construct in vitro and in vivo models of alcoholic liver injury. To explore the mechanisms by which GDNPs exert their protective effects against alcoholic liver injury, we examined the expression of oxidative stress-related genes and analysed inflammatory responses in vitro and in vivo. The experimental findings were verified using network pharmacology. METHODS: The composition of the GDNPs was analysed using liquid chromatography-mass spectrometry. GDNPs were extracted and purified using differential ultracentrifugation and sucrose density gradient centrifugation. In vitro models of alcoholic liver injury were established using LO2 cells, whereas C57BL/6 J mice were used as in vivo models. Oxidative stress, inflammation, and liver injury indicators were measured using appropriate kits. Levels of proteins associated with oxidative stress and inflammation were measured via western blot, while nuclear factor erythroid2-related factor 2 (Nrf2) and NF-κB protein expression was tested using immunofluorescence, immunohistochemistry, and flow cytometry. The levels of relevant transcription factors were determined using qPCR. Experimental haematoxylin and eosin staining was used to characterise the liver histological appearance and damage in mice. Network pharmacological analysis of GDNP mRNA sequencing of GDNPs was used to predict drug targets and disease associations using TCMSP. RESULTS: GDNPs primarily included 77 compounds, including organic acids and their derivatives, amino acids and their derivatives, sugars, terpenoids, and flavonoids. GDNPs have features that allow them to be taken up by LO2 cells and promote their proliferation. In vitro data indicated that GDNPs reduced the levels of alcohol-induced reactive oxygen species by activating the Nrf2/HO-1 signalling pathway, whilst inhibiting the NF-κB pathway and thereby reducing NO, tumour necrosis factor-α, and interleukin-1ß levels to alleviate inflammation. An in vivo model showed that GDNPs improved the liver parameters and pathology in mice with alcoholic liver injury. GDNPs activate the Nrf2/HO-1/Keap1 signalling pathway in a p62-dependent manner to exert antioxidant effects. Furthermore, the TLR4/NF-κB signalling pathway was involved in the in vivo anti-inflammatory effect. Network pharmacology also confirmed that the effects of GDNPs on liver disease were associated with oxidative stress and inflammation-related targets and pathways. CONCLUSION: This study showed for the first time that GDNPs can alleviate alcohol-induced liver damage by activating the Nrf2/HO1 signalling pathway and blocking the NF-κB signalling pathway, thus lowering oxidative stress and inflammatory responses. Hereby, we present the Nrf2/HO1 and NF-κB signalling pathways as potential targets and GDNPs as a novel therapeutic approach for the management of alcohol-induced liver damage.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Nanopartículas , Panax , Camundongos , Animais , NF-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Panax/química , Camundongos Endogâmicos C57BL , Inflamação , Estresse Oxidativo , Antioxidantes/farmacologia , Etanol/efeitos adversos , Anti-Inflamatórios/farmacologia , Nanopartículas/química
18.
Sci Total Environ ; 923: 171405, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432385

RESUMO

Cadmium (Cd) is a toxic heavy metal that primarily targets the liver. Cd exposure disrupts specific lipid metabolic pathways; however, the underlying mechanisms remain unclear. This study aimed to investigate the lipidomic characteristics of rat livers after Cd exposure as well as the potential mechanisms of Cd-induced liver injury. Our analysis of established Cd-exposed rat and cell models showed that Cd exposure resulted in liver lipid deposition and hepatocyte damage. Lipidomic detection, transcriptome sequencing, and experimental analyses revealed that Cd mainly affects the sphingolipid metabolic pathway and that the changes in ceramide metabolism are the most significant. In vitro experiments revealed that the inhibition of ceramide synthetase activity or activation of ceramide decomposing enzymes ameliorated the proapoptotic and pro-oxidative stress effects of Cd, thereby alleviating liver injury. In contrast, the exogenous addition of ceramide aggravated liver injury. In summary, Cd increased ceramide levels by remodeling ceramide synthesis and catabolism, thereby promoting hepatocyte apoptosis and oxidative stress and ultimately aggravating liver injury. Reducing ceramide levels can serve as a potential protective strategy to mitigate the liver toxicity of Cd. This study provides new evidence for understanding Cd-induced liver injury at the lipidomic level and insights into the health risks and toxicological mechanisms associated with Cd.


Assuntos
Cádmio , Doença Hepática Crônica Induzida por Substâncias e Drogas , Ratos , Animais , Cádmio/metabolismo , Multiômica , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Fígado/metabolismo , Estresse Oxidativo , Ceramidas/metabolismo , Ceramidas/farmacologia
20.
J Biochem Mol Toxicol ; 38(3): e23671, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38454809

RESUMO

Obesity is a major cause of nonalcohol fatty liver disease (NAFLD), which is characterized by hepatic fibrosis, lipotoxicity, inflammation, and apoptosis. Previous studies have shown that an imbalance in the autonomic nervous system is closely related to the pathogenesis of NAFLD. In this study, we investigated the effects of pyridostigmine (PYR), a cholinesterase (AChE) inhibitor, on HFD-induced liver injury and explored the potential mechanisms involving mitochondrial damage and oxidative stress. A murine model of HFD-induced obesity was established using the C57BL/6 mice, and PYR (3 mg/kg/d) or placebo was administered for 20 weeks. PYR reduced the body weight and liver weight of the HFD-fed mice. Additionally, the serum levels of IL-6, TNF-α, cholesterol, and triglyceride were significantly lower in the PYR-treated versus the untreated mice, corresponding to a decrease in hepatic fibrosis, lipid accumulation, and apoptosis in the former. Furthermore, the mitochondrial morphology improved significantly in the PYR-treated group. Consistently, PYR upregulated ATP production and the mRNA level of the mitochondrial dynamic factors OPA1, Drp1 and Fis1, and the mitochondrial unfolded protein response (UPRmt) factors LONP1 and HSP60. Moreover, PYR treatment activated the Keap1/Nrf2 pathway and upregulated HO-1 and NQO-1, which mitigated oxidative injury as indicated by decreased 8-OHDG, MDA and H2 O2 levels, and increased SOD activity. Finally, PYR elevated acetylcholine (ACh) levels by inhibiting AChE, and upregulated the α7nAChR and M3AChR proteins in the HFD-fed mice. PYR alleviated obesity-induced hepatic injury in mice by mitigating mitochondrial damage and oxidative stress via α7nAChR and M3AChR.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Brometo de Piridostigmina/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/complicações , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Fígado/metabolismo , Estresse Oxidativo , Cirrose Hepática/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Dieta , Dieta Hiperlipídica/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...